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Abstract

The variational inverse model (VIM) for data analysis was already shown to be statistically equivalent to
objective analysis (OA) provided the covariance function for OA and the VIM reproducing kernel are
identical. The VIM, however does not allow a direct derivation of the error ®eld associated with the
analysis. The purpose of the paper is to extend the one-to-one correspondence between the two analysis
schemes by proposing a heuristic statistical error expression for the VIM. The numerical e�ciency on
analysis and error map generation of both methods is compared on quasi-synoptic and climatological data
sets. It is shown that the VIM analysis and error map generation o�ers interesting numerical skills in both
case studies. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Among the variety of mapping methods used in geophysical sciences, objective analysis (OA)
(sometimes referred to as optimal interpolation) (e.g. Gandin, 1965; Bretherton et al., 1976) and
spline interpolation (e.g. Wahba and Wendelberger, 1980; McIntosh, 1990; Brasseur et al., 1996;
Brankart and Brasseur, 1996) have become very popular in the last decades for the interpolation
of atmospheric and oceanographic observations (e.g. Brasseur et al., 1996). It has already been
demonstrated (Kimeldorf and Wahba, 1970; McIntosh, 1990; Bennet, 1992; Brasseur et al., 1996)
that there is a statistical equivalence between spline and OA, provided the covariance function for
OA and reproducing kernel for norm splines are identical (see Table 1 and details in Appendices A
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and B). Numerous improvements of the classical analysis schemes have been proposed in order to
work with di�erent data types and to improve the numerical e�ciency and the quality of
the analysed ®eld (e.g. Brankart and Brasseur, 1996; Menemenlis et al., 1997). As discussed
in Sokolov and Rintoul (1999), each method has certain advantages compare to the others,
depending on the amount of data, the analysis grid, the accuracy of the analysis, the knowledge of
the correlation function, the presence of islands, . . .

OA is based on the minimisation of a statistical error estimation and allows the simultaneous
derivation of the analysis and the error ®eld. The numerical cost may however become prohibitive
for large data sets. On the contrary, smoothing spline interpolation, based on the minimisation of
a variational principle solved by a ®nite-element technique (e.g. Brasseur et al., 1996) is very
e�cient for large data sets, but the formulation does not o�er a direct statistical error estimation.

The purpose of the paper is to study a heuristic formulation of the statistical error of the
variational inverse model (VIM), derived from the one-to-one correspondence between OA and
VIM (Section 2). The numerical e�ciency of the schemes is compared (Section 3). Test experi-
ments are then conducted on two very di�erent observation data sets (Section 4) in order to
further examine the practical properties of the two methods. Both analysis schemes are sum-
marised in Appendices A and B.

2. Error estimation

The OA analysis scheme is based on the minimisation of a statistical error estimation. It is
assumed that the ®eld to estimate is one realisation out of a zero mean ensemble. Not-
ing d � �d1 . . . dNd � the observation vector and u�x� the analysed ®eld at location x, the solution
reads

u�x� � cT�x�Dÿ1d; �1�
where D is the observation covariance matrix and c�x� is the vector of prior error covariances
between each observation point and the location x (see Appendix A for details).

The OA allows a straightforward derivation of the expected error variance e2�x� associated
with the solution

e2�x� � �2�x� ÿ cT�x�Dÿ1c�x�; �2�

Table 1

Statistical equivalence between OA and VIM

OA VIM

Minimisation e2�x� � �u�x� ÿ ut�x��2 J �u� �PNd
i�1 li�di ÿ u�xi��2 � kuk2

Solution u�x� � cT�x�Dÿ1d u�x� � cT�x�Dÿ1d

Data correlation �D�ij � c�xi ; xj� � r2�xi�dij �D�ij � K�xi ; xj� � �1=l�dij

Data-®eld covariance �c�i � c�x; xi� �c�i � K�x; xi�
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where �2�x� is the prior error variance. Eqs. (1) and (2) imply that the error variance on the so-
lution is the prior error variance diminished by an analysis of the c�x� vector. In areas void of
data, e � �. In areas full of data, the error can be strongly reduced.

On the other hand, by solving the VIM with a ®nite element technique, the solution reads (see
Appendix B for details)

u�x� � T1�x�Kÿ1T2�x�d; �3�
where T1 and T2 are two transfer operators and K is the sti�ness matrix of the problem.

The VIM formulation however does not o�er an estimation of the error on the analysis, but the
analogy between solutions (1) and (3) suggests to compute directly

e2�x� � �2�x� ÿ T1�x�Kÿ1T2�x�c�x� �4�
assuming cT�x�Dÿ1 � T1�x�Kÿ1T2�x�.

An estimation of the statistical error is thus obtained by analysing the c�x� vector ®eld at each
location x. The K matrix was already used for the analysis (Eq. (3)) and does not need to be
reconstructed again to compute e2�x�.

This method is an hybridation of the objective scheme and the variational scheme. Indeed,
whilst the correlation function is hidden in the VIM analysis, it has to be explicitly computed at
each location x in order to derive the statistical error. So, the correlation function appears twice in
the error estimation, in the variational principle, where is it hidden, and explicitly like in usual
optimal interpolation.

It is not proved that this technique is statistically fully consistent, but it should be obvious that
near the boundaries, this solution will not su�er from the biases inherent to the OA. Indeed,
without taking into account the natural boundaries, i.e. with a homogeneous and isotropic sta-
tistical model, the solution will be attracted towards the background ®eld in areas void of data
and the error standard deviation e towards the background error standard deviation �. Indeed, the
latter overestimates the error and biases the solution in coastal areas and near islands (Brankart
and Brasseur, 1998), whereas the VIM method takes into account the geometry of the system and
prevents information to cross land barriers. The main advantage of the VIM is thus to adapt
automatically the statistical model by decorrelating the links between land and sea. A rigorous
dissection of Eq. (4) seems di�cult because the statistics are hidden in the VIM but it is impossible
to deny that a sensible improvement is obtained through this assumption compared to standard
OA (see Section 3).

3. Numerical e�ciency

In this section, we will consider the original OA and VIM analysis schemes, bearing in mind
that numerous improvements have been proposed in order to increase the numerical e�ciency of
both schemes.

Let us de®ne Ne and Nl as the number of elements and degrees of freedom in the ®nite element
mesh, respectively and N/ as the number of grid point where the solution is computed. Usually,
Nl � �3±4�Ne, depending on the complexity of the domain (islands, coastline, . . .).
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The number of algebraic operations necessary to produce a gridded ®eld using OA is ap-
proximately (Brasseur et al., 1996)

COAA
� k1N 3

d � k2NdN/; �5�
corresponding to Eq. (1). The ki coe�cients are constants.

The ®rst contribution, proportional to N 3
d , corresponds to the LU decomposition, whereas the

second term represents the projection of the solution from the `observational' space onto the
domain.

The equivalent number of operations for the VIM necessary to solve Eq. (3) yields (Brasseur
et al., 1996)

CVIMA
� k3N 5=2

l � k4NlN/; �6�
independent of the number of observations. The ®rst contribution, proportional to the power 5/2
of the number of degrees of freedom of the ®nite-element discretisation, represents the numerical
cost of the `sti�ness' matrix inversion, if the elements are assembled using the skyline algorithm
(Dhatt, 1984). The second term the projection from the `model' space onto the grid. The cost of
the data projection into the model space is negligible.

Similarly, the number of operations involved in the derivation of the statistical error (2) yields

COAE
� k1N 3

d � k5N 2
d N/; �7�

involving the inversion of the `in¯uence coe�cients' (®rst contribution) and the `projection' of the
c�x� vector ®eld at each location x (second contribution).

The corresponding numerical cost of statistical error derivation for the VIM (Eq. (4)) yields

CVIME
� k3N 5=2

l � k6N 2
l N/; �8�

where the ®rst contribution again corresponds to the sti�ness matrix inversion and the second
term corresponds to the analysis of the c�x� vector ®eld at each location x.

Table 2 summarises the order of magnitude of the numerical costs for OA and VIM. The OA
requires the computation of the correlation function, whilst it is inherent to the VIM analysis.
When deriving the statistical error ®eld for the VIM, the correlation function has however to be
computed explicitly.

The computational cost of the inversion of the matrix D for OA is proportional to the cube of
the number of data O�N 3

d �, and makes it prohibitive for large data sets such as climatological data
bases (line 1). The cost of inversion of the matrix K in the VIM is proportional to the power 5/2 of

the degrees of freedom Nl of the ®nite element mesh, namely O�N 5=2
l � (see Appendix B).

Table 2

Comparison of computational cost of OA and VIM (order of magnitude of dominant terms)

OA VIM

Matrix inversion �1=6�N 3
d N 5=2

l

Analysis (without inversion) N/Nd N/Nl

Statistical error (without inversion) N/N 2
d N/N 2

l
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After completion of the inversion, the projection of the solution onto the analysis grid requires
O�NdN/� operations for the OA whilst it is of O�NlN/� for the VIM (line 2).

The statistical error computation for the OA is of order O�N/N 2
d � and for the VIM, O�N/N 2

l �
(last 3).

Generally, we have N/ >
�����
Nl
p

, so the error computation is usually much more expensive than
the analysis itself.

The Nyquist's theory tells us that, in the case of a uniform data spatial distribution, Ne � O�Nd�
elements are enough to obtain an analysis with su�cient accuracy. Finer meshes are usually not
necessary since the solution for each element is already approximated by a third-order polynomial.
Moreover, ®ner physical scales cannot be resolved by ®ner meshes following Nyquist's theory.

Considering the dominant terms in the analysis cost (Eqs. (5) and (6)), and excluding the error
map generation, one gets a ®rst estimate of the critical number of data No over which the VIM
becomes numerically cheaper

1

6
N 3

d � N 5=2
l � �4Ne�5=2 � �4Nd�5=2 �9�

yielding No � 576 data. If Nl � 3Ne, then No � 324.
The error computation becomes faster as soon as Nl < Nd (for large N/), that is, when there are

at least a few observations per ®nite element.
In practice, the VIM code is more complicated and the overhead computation cost is greater.

Therefore, the choice between OA and VIM will depend upon both the number of data Nd and the
number of degrees of freedom Nl involved (and to some extent upon the number of grid points N/).

4. Examples

In the following examples, the free parameters of the analysis, a signal-to-noise ratio
S=N � �2=r2 and a characteristic length L have been calibrated by generalised cross validation
(Wahba and Wold, 1975; Craven and Wahba, 1979; Golub et al., 1979; Brankart and Brasseur,
1996; Rixen et al., 2001). In the OA, the correlation function can be chosen freely, whereas in the
VIM the shape of the correlation function is inherent to the problem formulation (Brasseur et al.,
1996; Brankart and Brasseur, 1996). In order to compare both OA and VIM, a common corre-
lation function, namely

c�r� � r
L

K1

r
L

� �
; �10�

(where K1 is the modi®ed Bessel function of order 1), has been chosen for our computations. A
linear regression of the data provides a common background ®eld for both OI and VIM in order to
make the comparison easier. In practice however, it is preferable to use a semi-normed reference
®eld obtained by dropping the underived term in the VIM. This latter procedure reduces un-
physical features in the analysis (Brankart and Brasseur, 1996). The ®nite elements and the grid
resolution have been chosen to ®t the characteristic length of the physical processes under study. As
each element is divided into 3 sub-elements representing a polynomial of order 3, the real char-
acteristic length of each sub-element is even smaller than the element itself (roughly a factor 2).

The benchmarks were run on a node of an IBM/SP2 RISC/6000 computer (160 Mhz).
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4.1. Quasi-synoptic data set

The ®rst example involves a quasi-synoptic data set (Vi�udez et al., 1996) included in the MODB
Data Base (Brasseur et al., 1996; Brankart and Brasseur, 1996), originating from a ®eld experi-
ment carried out from 22 September to 7 October 1992 on board the R/V Garcia del Cid, resulting
in a quasi-regular grid covering the entire Alboran Sea (108 stations), a two basins area located
between Spain and Morocco in the Mediterranean Sea. The analysis and statistical error have
been computed on a 91� 61 grid with a resolution of 0:05� � 0:05� (4:532� 5:585 km2).

The VIM ®nite element mesh has been constructed with a characteristic length scale of 50 km,
contains 172 elements and has 775 degrees of freedom. The statistical parameters L � 30 km,
� � 0:36 and r � 0:13 were optimised by GCV. Fig. 1 shows the salinity at 120 m depth for OA
(top) and VIM (middle) and the di�erence between the two ®elds (bottom). Main di�erences
between the two solutions are located in coastal areas of the Alboran Sea, but within the domain,
discrepancies range between ÿ0:01 and 0:02 only.

Fig. 2 shows the statistical error of the salinity ®eld corresponding to Fig. 1 at 120 m depth for
OA (top) and VIM (middle) and the di�erence between the two ®elds (bottom). The statistical
error for both solution is limited to 0.15. The di�erence between the two estimators is less than
0.005, except along the boundaries where values of up to 0.09 are found. The proposed heuristic
statistical error is thus in good agreement with the OA theory.

Fig. 3 illustrates a comparison of the numerical performances of the OA and VIM schemes
(with the same con®guration ± Nl, N/) as a function of the number of observations (arbitrary data
values). The VIM analysis becomes faster than OA when more than 250 data are available (top
®gure). The error map generation for the VIM becomes faster when more than 135 data are used
(bottom ®gure).

4.2. Climatological data set

The second example involves a selection of the MODB climatological data base at the surface
in June, namely 1858 stations (see Fig. 4). We see that the Western Mediterranean Sea is well
covered, specially along coastal areas, whereas the Eastern Mediterranean Sea lacks data. The
analysis and statistical error have been computed on a 184� 63 grid, with a resolution of
0:25� � 0:25� (22:080� 27:925 km2). The VIM ®nite element mesh has been constructed with a
characteristic length scale of 100 km, contains 801 elements and has 3077 degrees of freedom. The
statistical parameters obtained by GCV yield respectively, L � 180 km, � � 0:20 and r � 0:23.
Fig. 5 shows the surface analysis of this salinity data set obtained by OA (top), VIM (middle) and
the di�erence between the two analyses (bottom). Conclusions are similar to the previous ex-
ample. The OA and VIM provide almost identical ®elds, except in coastal areas and around is-
lands where di�erences of up to 0.1 are found. The extreme discrepancy found in the Aegean Sea
may be explained both by the strong extrapolation occurring there because of lacking data and
also by the behaviour of each analysis method. Whilst the OA allows the correlation function to
`cross' land, the VIM prohibits this bias. Fig. 6 shows the statistical error of the OA (top), VIM
(middle) and the di�erence between both ®elds (bottom). Again, di�erences are very tiny, except in
coastal areas, where values up to 0.1 are found.
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Fig. 1. Example 1: salinity ®eld (91� 61 grid points) at 120 m for OA (top, D � 0:2), VIM (middle, D � 0:2) and

di�erence between the two ®elds (bottom, D � 0:01).
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Fig. 2. Example 1: statistical error of salinity ®eld (91� 61 grid points) at 120 m for OA (top, D � 0:025), VIM (middle,

D � 0:025) and di�erence between the two ®elds (bottom, D � 0:005).
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Fig. 4. Example 2: climatological salinity stations in June at the surface.

Fig. 3. Example 1: CPU time (s) needed to perform variational (solid line) and objective (dashed line) analysis (top) and

error map generation (bottom) as a function of the number of observations.
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Fig. 5. Example 2: climatological salinity ®eld (184� 63 grid points) in June at the surface for OA (top, D � 0:25), VIM

(middle, D � 0:25) and di�erence between the two ®elds (bottom, D � 0:1).
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Fig. 6. Example 2: statistical error of climatological salinity ®eld (184� 63 grid points) in June at the surface for OA

(top, D � 0:05), VIM (middle, D � 0:05) and di�erence between the two ®elds (bottom, D � 0:05).
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Similarly to Fig. 3, Fig. 7 illustrates a comparison of the numerical performances of the OA and
VIM schemes as a function of the number of observations. The VIM analysis becomes faster than
OA when more than 500 data are available (top ®gure). The error map generation becomes faster
for the VIM when more than 550 data are used (bottom ®gure).

5. Conclusions

A heuristic statistical error estimation has been derived from the statistical analogy between OA
and VIM. This estimation has been tested on two distinct test cases and was shown to be con-
sistent with the classical estimation of the OA. The VIM analysis and error map generation (with
or without optimised parameters) are attractive for both synoptic and climatological data sets.
The variational inverse model (VIM) is the analysis tool of the MODB data base and may be
downloaded free of charge at http://www.modb.oce.ulg.ac.be.
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Fig. 7. Example 2: CPU time (s) needed to perform variational (solid line) and objective (dashed line) analysis (top) and

error map generation (bottom) as a function of the number of observations.
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Appendix A. Optimal interpolation

Optimal interpolation, as developed by Gandin (1965), Bretherton et al. (1976), assumes that
the true ®eld ut�x� that we are estimating is one realisation out of a zero mean ensemble. The
solution u�x� is expressed as a linear combination of the Nd observations di at xi

u�x� �
XNd

i�1

gi�x�di � gT�x�d: �A:1�

The principle of the method is to minimise the expected error

e2�x� � u�x� ÿ ut�x�� �2: �A:2�
Replacing (A.1) in (A.2), one obtains

e2�x� � u2
t �x� � gT�x�ddTg�x� ÿ 2gT�x�dut�x�: �A:3�

Noting c�x; y� the prior (or background) covariance and �2�x� � c�x; x� the corresponding
variance, it transforms (assuming that observation error and background error are uncorre-
lated)

e2�x� � �2�x� � gT�x�Dg�x� ÿ 2gT�x�c�x�; �A:4�
where D is the observation covariance matrix and c�x� is the vector of prior covariance between
the observations and analysis locations

�c�x��i � c�x;xi�: �A:5�
Noting r2�x� the observation error variances, and assuming that the observations are indepen-
dent, the matrix D writes

�D�ij � c�xi;xj� � r2�xi�dij: �A:6�
One veri®es that the error given by Eq. (A.4) is minimum everywhere if

Dg�x� � c �A:7�
and the optimal solution to the problem thus reads

u�x� � cT�x�Dÿ1d �A:8�
with the associated minimum expected error

e2�x� � �2�x� ÿ cT�x�Dÿ1c�x�: �A:9�
De®ning the transfer operator H�x� � cT�x�Dÿ1 the solution reads

u�x� � H�x�d; �A:10�

e2�x� � �2�x� ÿH�x�c�x�: �A:11�
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Appendix B. VIM

The VIM provides an elegant solution to the very classical problem of interpolating/analysing a
discrete set of Nd dispersed data points di at xi. Expressed in mathematical terms, the result of the
analysis, i.e. the ®eld u, is obtained as the minimum of a variational principle on the domain of
interest X (e.g. Brasseur et al., 1996):

min
u

J �u�; J �u� �
XNd

i�1

li di� ÿ u�xi��2 � kuk2 �B:1�

with the norm de®ned as

kuk2 �
Z

X
a2rru : rru
ÿ � a1ru � ru� a0u

2
�
dX; �B:2�

where li is the weight on the data, a0 the weight on u, a1 the weight on the slope of u, a2 the
weight on the curvature of u, A : B is the scalar product of two tensors A and B.

The ®rst contribution of the variational principle represents the distance between the data di at
location xi and the target ®eld u. The second contribution is a measure of the magnitude, slope
and curvature of the target ®eld.

It can be shown that on an in®nite domain the solution to the variational problem (B.1) can be
written (K is the reproducing kernel of the Hilbert space whose norm is de®ned by Eq. (B.2)
(Brasseur et al., 1996)

u�x� � cT�x�Dÿ1d �B:3�
with the data correlation matrix

�D�ij � K�xi;xj� � 1

l
dij �B:4�

and the data-®eld covariance

ci�x� � K�x; xi�: �B:5�
The Eqs. (B.3), (B.4) and (B.5) correspond respectively, to the OA equations (A.5), (A.6) and
(A.8), thus one writes l � 1=r2.

Obviously, the VIM may be solved by Eqs. (B.3), (B.4) and (B.5), but the numerical cost is then
equivalent to the OA.

This problem may be circumvented by solving the minimisation problem (B.1) with a ®nite
element technique. The arbitrary real geometry is then split in a mesh of Ne ®nite elements and the
global variational principle is expressed as the sum of elementary functions

J�u� �
XNe

e�1

Je�ue�: �B:6�

The solution is then approximated on each element by a linear combination of a known set of
shape functions s (a polynomial base of order 3) and the continuity of the solution is guaranteed
by identi®cation of adjacent connectors:
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ue�xe� � qT
e s�xe�; �B:7�

where xe is the position in a local coordinate system, and qe is the vector of connectors.
The elementary problem then reads

Je�qe� � qT
e K eqe ÿ 2qT

e ge �
XNde

i�1

lid
2
i ; �B:8�

where K e is the local sti�ness matrix and g depends on the local data.
The global variational principle may then be written as (Brasseur et al., 1996)

J�q� � qTKqÿ 2qTg �
XNd

i�1

lid
2
i ; �B:9�

where K is the sti�ness matrix and g depends on the data.
This expression is minimum when

q � Kÿ1g: �B:10�
The size of the matrix K is proportional to the number of degrees of freedom of the system. If the
elements are correctly sorted, then the resulting matrix is therefore very sparse and leads to a
computational cost roughly proportional to the power 5=2 of the number of degrees of freedom.
Consequently, the major part of the computation does not depend on the size of the data set.

The data are mapped on the ®nite element mesh through a transfer operator T2

g � T2�x�d: �B:11�
As the solution is naturally continuous, the result may be computed everywhere inside the domain
through a second transfer operator T1

u�x� � T1�x�q: �B:12�
Consequently, the result may be extracted at any location

u�x� � T1Kÿ1T2d: �B:13�
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